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BACKGROUND A MOTIVATING EXAMPLE

In predictive data mining, it is important to both find models with high pre- The class variable (+ or —) for this binary toy dataset is given by column c.

dictive performance, but also to understand what factors that are of impor- The prediction of a classifier, defined by the binary relation

tant for the predictions. f(A) = (A,®@A,) vV A,, on the original data is given in column y. The predic-
tion of the classifier on the randomized data is given in the column y"= f(A);

Classifiers are often opaque and cannot easily be inspected to gain under- non-matching predictions that drop fidelity are shown encircled.

standing of which factors that are of importance and how the classifier is
utilizing the structure of the data. Many high-performing learning algo-
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problem and can be used for analyzing what interactions are \ l /_ -
important for any generic classifier, without any assumptions e :
. . A= {{1},{2},{3},{4}}:
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The goal is to find groups of interacting attributes, the e ’

breaking of which decreases fidelity. This is realized iteratively,
In a top-down and greedy fashion. @ Calculate baseline fidelity ("Delta”) using an all-singleton grouping
The algorithm as available as an R-package —> @ Remove the attribute from the current grouping that reduces the fidelity

https://bitbucket.org/aheneliu/goldeneye A the least
Ps:// 9 /9 4 @ if fidelity drops below Delta: a group is found

store the group and start over using the current grouping
® celse, continue removing attributes

@ Using the final grouping, test which singletons can be pruned

RESULTS CONGLUSIONS

The groupings reveal interesting patterns in the data. The discovered The novel algorithm finds groupings of interacting attributes exploited by
groupings reflect the asumptions of the classifier and represent the interac- the different classifiers. These groupings allow for finding similarities among
tion between the classifier and the data. classifiers for a single dataset as well as for determining the extent to which

different classifiers exploit such interactions in general.

The method is usable in explorative data mining tasks, as it allows us to

glass g . peek into black box classifiers and thus aids in the interpration of results.
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